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Abstract

This study sought to improve cost estimating through calibration of the REVIC
software cost estimating model using a database which is more completely documented
than has been available heretofore. Standard regression analysis techniques, using two
different methods, were used and the results of the two methodologies compared. One
approach used the standard methodology described by Boehm in his book, Software
Engineering Economics. A second approach used a standard statistics software package
and a single independent variable (KDSI), ignoring the effort adjustment factor. A
comparison of the results was examined.

Two separate environments were calibrated to the REVIC model, using the
updated (December, 1994) Air Force Space and Missile Systems Center (SMC) software
database (SWDB) containing over 2,500 records. One calibration was on a data set
confined to the Military Ground operating environment and the other calibration was to
the Unmanned Space operating environment. Data sets were carefully screened for
completeness of information and normalized as to manhours per manmonths and to
software phases included in the development. However, neither calibration produced
significantly improved estimates.

The best results were obtained on the Unmanned Space database using the SAS®
System for Elementary Statistical Analysis with one independent variable (KDSI) and a
log-log distribution to model a linear relationship between effort and KDSI, ignoring the
19 parameters which REVIC uses as a constant multiplier. In general, when Boehm’s
procedure was used, better results were obtained using the simultaneous coefficient and

exponent calibration then were obtained by the coefficient only calibration.




A CALIBRATION OF THE REVIC SOFTWARE COST ESTIMATING MODEL

I. Introduction

Chapter Overview

Software technology enjoys a unique position in our society’s history of
technology. No other technology has had such a r:..;or impact on society, businesses,
research, or lifestyles in the United States. During the past thirty years, software
technology has experienced a gain of six orders of magnitude in performance while
simultaneously experiencing a decline in price. In no other technology can one identify
such marked strides in innovation and cost (Brooks, 1987). As a result, computers and
their attendant software continue to grow in popularity with customers who have come to
expect better and faster performance from their software programs. When increasing
popularity is combined with rapid advances in performance, the result is a scenario in
which software development must struggle to keep abreast of demand.

Four years ago, the U.S. Department of Defense (DoD) established the Corporate
Information Management (CIM) initiative. The CIM had, as one of its goals, the
implementation of a standards-based architecture (SBA) for its information systems. The
intent behind SBA was to reduce software development and support costs through
reusable code, standard platforms and shared data repositories (Bozman, 1993). This
initiative was followed, a year and a half later, by the establishment of the Federal High
Performance Computing and Communications (HPCC) Program which has, as its stated
goal, a trillion operations per second (teraops) (Nordwall, 1994). Obviously, given these
combinations, the expected expansion and demand for computer hardware and software

can only be expected to spiral upward.
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DoD is one customer who has been quick to recognize the advantages computer
technology provides to organizations and the importance of remaining on the leading edge
of technological advances. As a result, DoD has been placed in the onerous position of
maximizing performance while simultaneously reducing costs. With its software costs
accounting for more than one-half of its $9.5 billion annual information systems budget,
excluding classified systems (Bozman, 1993), DoD is spending approximately 10 percent
of its total budget on software life-cycle costs (Shebalin, 1994). As the military continues
to become increasingly dependent upon technology for its clout, software costs, as a
percentage of the DoD budget, are expected to continue to increase at about 12 percent a
year (Shebalin, 1994).

In recognition of the increasingly important role that software technology plays in
U.S. national security, this thesis will address the estimation of costs for software
acquisition with an emphasis on improving the accuracy of cost estimation for software
development. This chapter justifies the analysis by presenting the general issues
surrounding software cost models such as the Constructive Cost Model (COCOMO) and
the Revised Enhanced Version of Intermediate COCOMO (REVIC) model, identifying
some of the more pressing issues and the resulting research objectives which will be
addressed in an effort to contribute to the resolution of the issues. This will be followed
by a summary of the methodology employed with a description of its scope and

limitations.

General Issue

One of the most controversial areas in software development is in the estimating of
software development costs. The software development process is highly susceptible to
many problems with the controversy revolving around schedule slips, cost overruns, and

programs of poor quality. In 1981, a software cost estimation model was considered to be
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estimating well if it estimated software development costs within 20 percent of the actual
costs 70 percent of the time (Boehm, 1981). Yef, despite the increasing allocation for
computer research and development over the past twenty years, the accuracy of cost
estimates for software development and the 20/70 success rate remains unimproved
(Ourada, 1991). A large part of the problem is the trial-and-error process inherent in
software development. Developers have many options in software development and may
try several before they find the one that works best. As a result, software development is
more unpredictable than the development of traditional hardware systems (Asbrand,
1993).

Some experts predict that future software systems will be assembled from discrete
modules or components. If that occurs, software will more closely resemble hardware
that is assembled from off-the-shelf parts. This would enable estimators to predict
software costs with a reliability comparable to current cost estimates for hardware systems
(Babcock, 1994). However, until that occurs, the need to develop better and cheaper
software will continue to exist. The requirement that we improve upon our current ability
to estimate software development costs is becoming more and more essential as program
managers fight harder and smarter for the decreasing dollars available to support their

programs.

Specific Problem

Many software cost estimating models have been developed for the purpose of
estimating software development and support costs. Some of the more popular models
used throughout the Air Force and DoD include the REVIC, PRICE-S, SASET, SLIM,
SEER-SEM, AND SOFTCOST models.

The Space and Missile Systems Center (SMC) and DoD have a requirement for

more accurate estimates for software development costs. This research proposes to
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examine the REVIC cost model for purposes of calibrating it to homogenous data sets.
The REVIC model has been selected primarily because it is one of the more common cost
models in widespread usage throughout DoD. Other factors influencing selection of
REVIC for further study include REVIC’s non-proprietary nature, the visibility of its
algorithms, and its similarity to COCOMO and several other cost models in current use by

DoD.

Scope of Research

Previous research efforts to calibrate REVIC have been constrained by limited and
outdated databases. This effort will be based on a larger and more recent database,
compiled, under contract, by Management Consulting & Research (MCR), Inc., and made
available through the Space and Missile Systems Center (SMC) in December 1994. The
research will primarily seek to determine:

1. The input parameters which most strongly influence software costs.

2. The effect of the software development environment on model performance.

3. The circumstances under which REVIC may be the most appropriate model.

4. The calibration methodology that produces the best results.

5. The extent to which calibration influences the accuracy of software estimates.

Previous efforts to calibrate REVIC have been confined to the method
recommended by Boehm (Boehm, 1981). In this effort, the model will be calibrated using
two methods. First the model will be calibrated using Boechm’s methodology which
accommodates environmental factors as constant cost multipliers (Table 3-2.). The
model will be calibrated a second time using a statistical package such as SAS and
assuming a log-log distribution with lines of code being the single cost driver. A

comparison of the methods will be conducted to determine the influence of environmental

factors on cost.
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Summary

This chapter has provided an overview of the status of software development and
has identified pertinent questions regarding the REVIC software cost model which this
research effort will address. If it can be demonstrated that the calibration of REVIC will
produce more accurate cost estimates, program managers of DoD systems will be able to
more accurately predict the development costs for their systems. Not only will this result
in more realistic budget requests, but will also reduce the likelihood of program

cancellations due to cost overruns.
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Il. Literature Review

Chapter Overview

Before pursuing the research objective of calibrating REVIC, a review of the
history of software development and earlier research efforts to develop or calibrate

software development cost models should be considered.

Summary of Cost Models

The first significant contribution to software cost modeling was the 1965 Systems
Development Corporation’s (SDC’s) “Nelson” model. This model was based on an
analysis of 104 attributes of 169 software projects. The most conclusive result from the
SDC effort was that a linear cost-estimation model would not produce useful results.
Although it was not a very accurate predictor of software cost, it did produce some
valuable insight into software cost estimation and served as a springboard for later models
(Boehm, 1981).

One of the earliest models to enjoy a modicum of success was the TRW
“Wolverton” model. It was calibrated to a class of near-real-time government command
and control projects, but was less accurate for other classes of projects (Boehm, 1984).
The Doty model was another early parametric model that was developed about the same
time. The Doty model had some problems with stability and exhibited a discontinuity
when delivered source instructions (DSI) exceeded 1,0000,000, that is when KDSI =
10,000, producing widely varying estimates (Boehm, 1984).

In the late 1970’s, a major advance was made with the near simultaneous
development of several software cost estimation models. Among these were the Putnam

SLIM model and the RCA PRICE-S model, followed in 1981 by the COCOMO model.




The Putnam SLIM model was based on Putnam’s analysis of the software life cycle in
terms of the Rayleigh-Norden distribution of project personnel level versus time. The
SLIM approach provided a number of useful insights into software cost estimation such as
the Rayleigh curve distribution and the explicit treatment of estimation risk and
uncertainty (Boehm, 1984).

RCA’s (now Lockheed-Martin) PRICE-S model was a macro cost-estimation
model developed primarily for embedded system applications. Early versions contained a
widely varying subjective complexity factor and were primarily developed to handle
military software projects (Boehm, 1984).

The developer of the COCOMO model took a rather unorthodox view of his
product in that he made public the algorithms upon which the model was based by

documenting and publishing his research in a book, Software Engineering Economics

(Bochm, 1981). Boehm’s primary motivation for COCOMO was to help people
understand what software cost models estimate and the consequences of decisions
software managers make. COCOMO consisted of three increasingly detailed models--
Basic, Intermediate and Detailed (Boehm, 1984). For all three versions, certain

assumptions are made:

(1) Estimates are in man-months (MM) of direct labor required from the start of

preliminary design to the end of acceptance testing.

(2) The primary driver is the number of source lines of code (SLOC) expressed as
thousands of delivered source instructions (KDSI).

(3) There are no substantial changes in requirements (Ferens, 1994).
The basic COCOMO is useful for quick “ball park” estimates, while the intermediate and
detailed versions are useful for more refined estimates. Basic COCOMO estimates effort
based solely on program size in KDSL Intermediate COCOMO improves upon the basic

estimate by using 15 attributes, describing personnel capabilities, tools used, system
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requirements, etc., as additional cost drivers, to compute effort. The primary difference
between the detailed and intermediate COCOMO is that the detailed COCOMO considers
the phase sensitivity of the attribute ratings and values (Boehm, 1984). A summary of the
basic and intermediate algorithms used for estimating effort are provided in Table 2-1
below.

TABLE 2-1 COCOMO Development Effort Algorithms

Mode Basic Model Intermediate Model

Organic MM =24 (KDSD'* | MM = 3.2 (KDSD)'*

Semidetached | MM = 3.0 (KDSD''? | MM = 3.0 (KDSI)!?

Embedded MM = 3.6 (KDSD)** | MM = 2.8 (KDSI)!*°

COCOMO quickly became popular because it was not proprietary; it was free; and it was
relatively easy to learn and operate. Needless to say, shortly thereafter a number of
COCOMO variants began to appear on the market. One of these was REVIC.

More recently developed cost models have included models such as REVIC,
SASET, and SEER-SEM. REVIC was developed by Ray Kile, an Air Force reserve
officer (Kile, 1991), for use by U.S. Government and industry and is managed by the Air
Force Cost Analysis Agency (AFCAA). The REVIC model was built using regression
techniques and a database of 281 completed contracts with software involvement at the
Rome Air Development Center. REVIC implements only the intermediate version of
COCOMO. It also contains different coefficients and uses a Program Evaluation and
Review Technique (PERT) of sizing for new programs. REVIC has four new input
parameters not contained in COCOMO--requirements volatility, required reusability,
security, and a management reserve risk factor. The algorithms for REVIC are
comparable to the COCOMO algorithms, except for the coefficient, and are summarized

in Table 2-2.
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Table 2-2 REVIC Nominal Intermediate Equations

Mode Effort Equation Schedule Equation
Organic MM = 3.464 (KDSD)'”* M=3.650 (MM)"**
Semidetached MM = 3.970 (KDSD)'** M=3.800 (MM)"**
Embedded MM = 3.312 (KDSD'** M=4.376 MM)"*
Ada MM = 6.800 (KDSD)*** M=4.376 (MM)"*

The Software Architecture, Sizing, and Estimating Tool (SASET), another non-
proprietary cost model, was developed by Martin Marietta (now Lockheed Martin) for
Navy and Air Force cost centers. Originally, SASET was intended as a non-proprietary
DoD-only model. Although the model considers numerous factors and contains an
exhaustive calibration file, it has failed to gain favor with estimators because it is not an
casy model to learn or to use. The developer’s failure to implement upgrades has also
impacted on SASET’s usefulness.

One of the more popular models used by the Air Force is the System Estimation
and Evaluation of Resources Software Estimation Model (SEER-SEM). SEER-SEM
was developed by Galorath Associates in 1987. It has a multitude of inpﬁts, uses DoD
terminology and is compatible with different development methods--spiral, waterfall,

prototype, and incremental.

Summary of Prior Research

Cost analysts and managers have long recognized that improvements were needed
in the capabilities of existing cost models to estimate software costs accurately. As early

as 1978, Captain Walker, an AFIT graduate student, atiempted to develop a software
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model that could assist in evaluating the effects of “modern” programming practices on
the life-cycle cost of software.

The cost model which Walker developed was similar to SLIM, a cost model
developed by Putnam, in that it was a macro cost estimation model. Macro cost models
assume that cost driver attributes are applied uniformly across the entire product (Boehm,
1981). This approach is only good for rough order magnitude estimates such as those
conducted early in the acquisition of a system. Walker’s model added an additional
parameter in an attempt to more accurately model the support costs found in the left tail of
the Rayleigh distribution of life-cycle costs.

At the time of his study, Captain Walker noted that data availability placed a most
severe limitation upon the ability to develop a model that would predict software costs
with any reasonable degree of accuracy. In his opinion, the primary cause of poor
database availability was due to four factors:

(1) the lack of data collection practices,

(2) competition among contractors,

(3) errors in data collection, and

(4) lack of consistency among data sets (Walker, 1978).

Walker found his efforts hampered by an inability to find, in literature, examples of any
life-cycle costing of software systems. He also observed that cost models were restricted
to either the development phase or to the operations and support phase (Walker, 1978).

In summarizing his efforts, Walker identified six factors which he felt affected
software costs: (1) requirements, (2) hardware, (3) sizing, (4) management, (5) software
unique parameters such as application, language, support software tools, structural design,
and modularity, and (6) personnel capabilities and experience. When developing a cost
estimate, Walker suggested that a sensitivity analysis be used to identify the best

distribution of factors that contribute to cost (Walker, 1978).




Walker’s observations are supported by the findings of Thibodeau in his evaluation
of a number of software cost estimating models (Thibodeau, 1981). Thibodeau’s findings
mirrored what Walker and other researchers had already concluded--that model
performance is very much environment dependent and that data availability and quality are
a major limiting factor in cost model development. Thibodeau was of the opinion that the
best way to develop a software cost estimate was to use the simplest model structure and
to calibrate the model’s parameters to represent the development environment
(Thibodeau, 1981). His evaluation confirms the importance of data definitions to the
interpretation of model performance and supports the recommendation that model
development activities be used as the basis for establishing data reporting requirements
under software development contracts. Thibodeau strongly suggests that software data
reporting become an integral part of the contracting process much as operating costs are
now, and that items and formats be defined by the Air Force and provided routinely by the
contractors (Thibodeau, 1981).

About the same time that Thibodeau was making his observations, Dr. Barry
Boehm was authoring a book to introduce the public to COCOMO, a software cost
estimating model he had developed in response to the demand for control of escalating
software costs (Boechm, 1981). The book documented his research into software cost
modeling and has become a classic in the field of software development. Besides the
problems of missing data and clerical inaccuracies, Boehm found some of the more
frequent sources of software data collection problems stemmed from:

(1) inconsistent definitions such as different definitions for “delivered” instructions,

(2) observational bias,

(3) differences in local vs. global frames of reference,

(4) averaging and size effects, and

(5) double counting (Boechm, 1984).
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The first study on the accuracy of REVIC was noted by Daly, during a study of
software schedule estimation, in 1989. He reports that REVIC was accurate to within 25
percent of the actuals less than 30 percent of the time. However, he further noted that
accuracy could be improved to 70 percent when adjustments were made during the
preliminary design stage (Daly, 1990).

A second study of note occurrcd in 1991 when Ourada performed a calibration and
validation of four models, REVIC, SASET, SEER, and COSTMODL in one development
environment, using half of a subset of ground-based military programs, and doing a
comparison using the remaining 14 programs as another development environment. When
compared to the other subset, the accuracy results were mediocre, being accurate only to
within 25 percent less than 30 percent of the time, even though the model had been
calibrated for the other half of the subset. Interestingly, the model was more accurate
after calibration, 25 percent for 70 percent of the time, for a subset of unmanned space
programs--a subset for which REVIC had not been calibrated! Ourada also noted that, for
all parameters, the coefficient-only calibration was more accurate than the coefficient and
exponent calibration (Ourada, 1991).

In summary, Ourada found that REVIC was good at estimating outside the
environment of calibration, but not good at estimating inside the environment. He
concluded that the models were highly inaccurate and very dependent upon the
interpretation of the input parameters (Ourada, 1991).

The latest study of significance was conducted by Coggins and Russell in 1993.
Their study attempted to examine four cost models, REVIC, SASET, PRICE-S, and
SEER-SEM, and to identify the differences in the models and the impact these differences
had on cost estimates. Coggins and Russell also attempted to normalize, or adjust, the
models in an effort to obtain comparable estimates from the various models. Their

research identified differences that existed between the models at nearly every level.
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In the case of REVIC, they found that the developer had not included a Systems
Requirements Analysis/Design development phase and that the model did not differentiate
between CSCIs, CSCs, and CSUs. They also noted that, according to the model
developer, REVIC was limited to an estimating range of 500 to 130,000 SLOC (Coggins
& Russell, 1993).

Their conclusions were that, although it was not particularly difficult to identify
differences between the models, the differences in definitions for model inputs, internal

equations, and key assumptions were so dissimilar as to render objective normalization

efforts virtually impossible (Coggins & Russell, 1993).

Summary

This chapter has provided background information needed to understand the
importance and relevance of this research. It appears, thus far, that most research into the
accuracy of software cost models has arrived at similar conclusions--lack of cost data
makes attempts to estimate software development costs a highly inaccurate science.
Perhaps Ferrentino was correct when he stated that estimation is an educated guess and
that there is no method to accurately predict the time and manpower needed to develop a
software system, and that “we can’t make good estimates, but we can make estimates

good” (Ferrentino, 1981.). This research hopes to prove otherwise.
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lll. Methodology

Chapter Overview

This chapter addresses the data and methodology which will be used to calibrate
the REVIC software cost model. Since the proper use of any software model requires a
thorough understanding of the model’s assumptions, capabilities, and limitations, the
methodology will address these parameters as appropriate when they impact on the

decisions made regarding selection of data and method of analysis.

Software Database

REVIC was calibrated using the Air Force Space and Missile Systems Center
(SMC) software database (SWDB). The SMC SWDB is a recently updated database, last
updated in December 1994, for the specific purpose of improving the estimating capability
at SMC and to be used for this calibration effort. The database contains 2,614 records of
software development and maintenance data and has 76 fields of information for each
record. The software development data is provided at the project, the computer software
configuration item (CSCI), the computer software component (CSC) and the computer
software unit (CSU) levels. (Stukes, 1994).

The primary data sources for the SMC database were:

(1) The Space Systems Cost Analysis Group (SSCAG) and its contributing non-
government SSCAG member organizations (primarily defense contractors);

(2) The USAF Space and Missile Center (SMC), which included the Aerospace
Corporation and various Program Offices;

(3) Other Government Agencies, including the Air Force, Navy, and Army Cost
Analysis Centers, the Army Missile Command and the Naval Air Development Center; and
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(4) over 250 select government and industry organizations interested in software
development and maintenance cost estimating and management.

Data collection forms and dictionaries were provided to the interested organizations to aid
in the normalization of data collected (Stukes, 1994).

All new data received had been previously screened and entered into the SWDB
automated user base by MCR, who had sanitized all data so as to exclude any proprietary
or competition sensitive information, such as company name and program, and to protect
the anonymity of the source. MCR had also normalized the new data as to effort and size
and stratified it using a matrix which matched software applications with software
functions. Other criteria which MCR used to stratify, or group, the records included:
platform, software level, operating environment, software application, software function,
programming language, and confidence level (Stukes, 1994).

However, further steps were required to normalize the effort and size before the
data could be entered into the REVIC model. First, because REVIC considers a
manmonth to be 152 hours, all effort was first standardized to 152 hours. Next, since
REVIC calculates new and revised effort differently, the DSI of each project was
normalized by adjusting new and reused DSI to mirror the total DSI as calculated by
REVIC, using the formula:

EDSI = ADSI * [(4 DM + .3 CM + .3 IM)/100}, (Eq. 3.1)

where EDSI is the equivalent DSI, and

ADSI is the adapted DSIL.
The ADSI were then multiplied by the percent of design modification (DM), code
modification (CM), and retesting (IM) required. No common code was included in the
total DSI thus calculated. Finally, because of the way REVIC estimates effort for the

software development phases, the effort for each project had to be normalized to reflect
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the equivalent REVIC effort. This process is explained in more detail in the following

section.

Cost Model

Since the proper use of any software model requires a thorough understanding of
the model’s assumptions, capabilities, and limitations, the first priority of the researcher
was to become familiar with the REVIC cost model, its limitations and capabilities, and
the options available for calibration of the model to a specific database. One such
characteristic of REVIC which required immediate attention was the manner in which the
model addressed the major phases which occur during the development process.

The typical software development process, as described in DoD Standard 2167A,
consists of eight phases:

(1) The System Requirements Analysis and Design Phase,

(2) The CSCI Requirements Analysis Phase,

(3) The Preliminary Design Phase,

(4) The Detailed Design Phase,

(5) The Coding and CSU Testing Phase,

(6) The CSC Integration and Testing Phase,

(7) The CSCI Testing Phase, and

(8) The System Integration and Testing.

REVIC estimates costs for only six of the eight development phases identified
above. REVIC initially calculates and allocates effort to four phases, Preliminary Design
through CSCI Testing while combining two of the phases, Coding & CSU and CSC
Integration and Testing (See Table 3-1). REVIC then adds 12% to the resulting
development effort for the Software Requirements Analysis Phase and 22% for the

Systems Test & Integration Phase. Normalization of the data was complicated because
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the SMC SWDB used different terminology for the eight phases. A further complication
arose due to the different percentages which REVIC and the SMC SWDB assigned to
each phase. First the five SMC SWDB core effort phases (preliminary design through
CSCI test) were normalized to the four core REVIC phases (preliminary design through
integration and test). Finally, the core normalized effort was adjusted to mirror the actual
phases included in the effort. These phases are summarized in the second page of
Appendices C and D. A summary of the phases and their percentage of effort allocated by
REVIC and the SMC SWDB are provided below.

Table 3-1: A Comparison of Development Phase Terminology

DoD Mil-STD 2167-A REVIC SMC SWDB
Sys Reqrs Anal & Design Phase None None
CSCI Requirements Anal Phase | Software Requir Phase (12%) SW Requirements Phase (12%)
Preliminary Design Phase Preliminary Design Ph (23%) Prelim Design Phase (11.4%)
Detailed Design Phase Critical Design (29%) Detail Design Phase (19.1%)
Coding & CSU Testing Phase Code & Debug (22%) Code & Unit Test Phase (29.8%)
CSC Integration & Testing Code & Debug CSC Test & Integr Ph (35.6%)
CSCI Testing Phase Integration & Test Phase (26%) CSCI Test Phase (4.1%)
System Integration & Testing Dev Test & Integration Ph (22%) Sys Test & Integr Phase (7.2%)
None None Opn Test & Eval Phase (4.8%)

Please note that in REVIC, the core phases (preliminary design through integration
and test) total 100% as does the SMC SWDB core phases (préliminary design through
CSCI test). Yet when the additional phases are included, the percentages become a total
of 134% for REVIC and 117.5% for the SMC SWDB. Needless to say, normalizing the
SMC SWDB effort to REVIC equivalent effort developed into a real chore.

A considerable amount of time was also spent becoming familiar with the nineteen
parameters which REVIC uses to arrive at a complexity factor (IT or EAF) for each
project and determining their equivalent parameters identified in the SMC SWDB. A
summary of this comparison is included in Appendices C and D. The REVIC parameters

are summarized in Table 3-2, on the next page.
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Table 3-2: Key to REVIC Parameters

Parameters Description
ACAP Analyst’s Capability
PCAP Programmer’s Capability
AEXP Applications Experience
VEXP Virtual Machine Experience
LEXP Language Experience
TIME Processing or Throughput Constraints
STOR Storage/Memory Constraints
VIRT Virtual Machine Volatility
TURN Turnaround Time
RVOL Requirements Volatility
RELY Required Reliability
DATA Data Base Size
CPLX Code Complexity
RUSE Required Reusability
MODP Modem Programming Practices
TOOL Use of Design and Programming Tools
SECU DoD Security Classification
RISK Risk associated with Platform
SCED Schedule Compression/Stretch Out

An examination of the SMC database revealed a lack of information for all key
parameters. For this reason, a determination was made to limit the multipliers in éach
operating environment (i.e. military ground and unmanned space) to those parameters
which contained complete information for all data points selected. The parameters used
for each operating environment are also summarized in the worksheets in the Appendices.
In essence, this defaults the other parameters to a value of “1”. Because of the manner in
which REVIC considers the phases, and the adjustments which this entailed, the data were
also examined for completeness of information regarding the phases since this information

was essential in determining the adjusted effort.

Method of Stratification

Prior to any stratification efforts, this researcher decided that more than eight

records would be required before calibration would be attempted on any data set, with
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stratification being by operating environment, as requested by the sponsor. Initial
stratification resulted in the identification of two operating environments with sufficient
records for calibration: Military Ground, and Unmanned Space. Within each platform,
data points were stratified by software level. Since REVIC does not differentiate between
CSCI's CSC’s, and CSU’s, only data at the CSCI software level was identified. Data
points were further limited to U.S. only efforts. All software applications and functions
were included. Excluded from the database were those programs which consisted of
Assembly, Machine, and Microcode language. Since the recommended estimating range
for REVIC is from approximately 500 to 130,000 SLOC per REVIC data file, (Coggins &
Russell, 1993), only data points within this range were selected. During selection of data
points, it was also discovered that using the category of confidence level and limiting the
search to those records with a nominal to high confidence level speeded the screening out
of those records with incomplete information. In other words, confidence level was

viewed as a way to rank the completeness of information available on a particular record.

Method of Analysis

The principal method of analysis was regression analysis and included, first, the
technique of linear least squares best fit following the procedures recommended by Boehm
(Boehm,1981). This technique was applied to entire data sets as well as to subsets of
data. Error reduction in the model’s predicting ability was examined in terms of the

magnitude of the relative error (MRE), where

MRE = | Yacwa - Y predicted 1/ [ Yactsa | (Eq.3.2)
the mean magnitude of relative error (MMRE), where

MMRE = 1/n * ¥ MRE;, (Eq. 3.3)
the root mean square error (RMS), where

RMS = [ 1/n 3( Yeewa - Ypredicea)” 1", and (Eq. 3.4)

3-6




the relative root mean square (RRMS) error, where
RRMS = RMS/ (1/n 2 Yactwat )- (Eq. 3.5)
A final statistical test which was used was
PRED (.30) =k/n, (Eg. 3.6)
a prediction level test where k is the number of projects in a set of »n projects whose MRE
is less than or equal to 30% (Conte, 1986).

A second analysis was also conducted using a standard statistical software
package, in this case SAS®, to arrive at an algorithm. A comparison of the results of the
two methods of calibration was then made to determine if the two methods produced
similar results. The results should provide some insight into the importance of the role of
the REVIC parameters which are used as constant multipliers in the REVIC model.

Calibration was limited to calibration of operating environments. As stated earlier,
two operating environments were used for this study. The first environment from which
data points were selected was the Military Ground platform. This platform was selected
to be calibrated first because it contained a larger database and appeared to have the
potential for a greater number of data points. The second environment selected for
calibration was the Unmanned Space platform. Unmanned Space contained one of the
smaller data bases of those platforms examined. A third operating environment, Military
Mobile, was considered, but yielded only eight data points. Such a small data set did not
permit the use of selected data points to be used as controls according to the guidelines
established by the sponsor. For this reason, no calibration was attempted for the Military
Mobile operating environment. All other operating environments in the SMC SWDB
yielded fewer than eight data points.

Values for the coefficients and exponents in the REVIC algorithm were

determined and tested using the steps requested by the sponsor:




(1) Select data points for calibration from a homogeneous data subset. This was
the most difficult part of the study. Although MCR had provided sources with a data
collection form containing guidance as to the information needed and had conducted an
extensive effort to locate critical missing pieces of information, the data still contained
much missing information. Each data point was scrutinized for completeness of
information before being included in the data set. As a result, of the total 1,614 records in
Military Ground, only 11 were determined to meet the requirements for completeness. Of
the total 206 records in Unmanned Space, only 13 were found to meet the requirements
for completeness.

(2) Set aside several data points from those data identified to be used for
validation. Those projects chosen as controls were selected at random using a method
requested by the sponsor and thesis advisor. First all data points were listed in order of
size. Then, after selecting a “seed” project at random, every third data point from the
“seed” was selected as a control project until a predetermined number of controls had
been identified. The total number of projects to be retained as controls was determined
using the following criteria:

(a) If total data points total 8 or less, use all points to calibrate;

(b) If total data points total 9 to 12 points, use 8 to calibrate and the
others as controls to validate improved estimating capability of model;

(c) If total data points total more than 12 points, use 2/3 of the points to
calibrate and 1/3 of the points as controls.

(3) Adjust effort for REVIC capabilities.

(4) Determine the predicted costs of each data point using the REVIC cost model
before any calibrations are conducted.

(5) Using the larger data set, adjust the REVIC model parameters, using linear

regression techniques, 10 a least squares best fit algorithm from the known data.
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Adjustment will be made to the model coefficients only, and to both the model coefficient
and exponent using the techniques suggested in the REVIC User’s Guide (Kile, 1991) and
by Dr. Boehm (Boehm, 1981).

(6) After the model has been calibrated, once again predict costs of the control
group and compare those predicted costs with predicted costs obtained from the
uncalibrated model.

Finally, the results were examined to ensure that the basic assumptions of
regression analysis held. Methods of analysis used for this examination were the Wilcoxon
Signed Rank Test and the Wilk-Shapiro/Rankit Plot of Residuals. The Wilcoxon Signed
Rank Test is a nonparametric alternative to the Paired-T Test and requires virtually no
assumptions about the paired samples other than that they are random and independent.
The Wilcoxon Signed Rank Test assumes that you have two groups and have drawn
samples in pairs. It tests the hypothesis that the frequency distribution for the two groups
are identical (Mendenhall et al, 1990).

The Wilk-Shapiro/Rankit Plot of Residuals 1s useful for examining whether the test
assumptions in regression have been violated by examining whether a variable conforms to
a normal distribution. A rankit plot of the variable is produced and an approximate Wilk-

Shapiro normality statistic (Shapiro-Francia) is calculated (Sieget, 1992).

Method of Calibration

Using Boehm’s methodology for a coefficient only calibration:

4800

(1) Determine the most appropriate constant, “c”, for the nominal effort equation
in the REVIC estimating relationship,
MM = ¢(KDSI)'*°IT (EM), (Eq. 3.7)
where IT (EM) represents the overall product of the effort multipliers resulting from a

project’s cost driver attribute ratings, or more concisely, its effort adjustment factor, I1.
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(2) Solve for the value of “c” in the system of linear equations,
MM = c(KDSD)'*°IT; ..
U
... MM = ¢(KDSD)'*°11, (Eq. 3.8)
which minimized the sum of the squares of the residual errors
S =3 [c (KDSD'* IT; - MM; I*, and
setting (KDSI)"*° IT; = Q; for simplicity, the equation becomes
S=Y[cQ-MMT. (Eq. 3.9)
(3) We can then determine the optimal coefficient “Cuea” by setting the derivative
dS/dc equal to zero and solving for the mean of “¢”,
0=dS/dc =2 2 [Caean Qi - MM,;]1 Qi , OF
0= Cmean Q° - MM, Qs .

[XPR 4]

Thus the mean of “¢” becomes
Coean = & MM; Qi / 2Q7, (Eq. 3.10)
using the form in Table 3-3,

Table 3-3. Calibrating the Constant Term

Project KDS[; II; MM, MM; Q; MM,Q; Q'

where IT; is the Effort Adjust Factor forn=1, 2, ...... n;
MM., is the effort estimated by the uncalibrated model forn =1, 2, ...n;
MM,; is the actual REVIC equivalent effort; and
Q: is equal to (KDSD'*’forn=1,2, ....... n.

A similar least-squares technique may be used to calibrate both the coefficient term

¢ and the exponent factor b in the REVIC effort equation:

(1) First we rearrange the equation

MM = ¢(KDSI)’II (EM), to
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c(KDSI)® = MM/IL. (Eq. 3.11)

(2) Then we make the equation linear by taking the logarithm of both sides so that

we have
log = + b log (KDSI) = log (MM/II). (Eq. 3.12)

(3) Our next step will be to solve for the values of log ¢ and for b so as to
minimize the sum of the squares of the residual errors. We do this by solving the
equations

4 108 Cmean + 21 bmean = do, and (Eq. 3.13)
a1 108 Cmean + @2 brean = d1 (Eq. 3.14)

where the quantities ag, a1, a;, do, and d; are calculated as:

a=n (Eq. 3.15)
a; = ¥, log (KDSI); | (Eq. 3.16)
a, = Y, [log (KDSI); I* (Eq. 3.17)
do = ¥ log (MM/IT); (Eq. 3.18)
d; = X log (MM/IT); log (KDSI);. (Eq. 3.19)

(4) The solutions above are then used to find 10g Cmean
and bpea, and we have:
10g Cmean = (A2do - a1d1) / (a0a; - a1%), and (Eq. 3.20)
Dmean = (20d1 - a3do) / (a0a; - a;,>) (Boehm, 1981). (Eq. 3.21)
Finally, a similar analysis will be conducted wsing the SAS® statistical software
package and standard statistical analysis procedures. Since the REVIC algorithm is a
multiplicative cost estimating equation of the form Y predictea = Bo*X®! to derive a
multiplicative cost estimating equation will require three steps:
First, we take the logarithm of the X and Y, so that Yprediciea = Bo*X®! becomes a
linear model,

log (Y) =log (Bo) + B; log (X). (Eq. 3.22)
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Next, we derive the linear least squares best fit equation in terms of the logarithms
of Y, X, and Ba.

Finally, we transform this equation back into the X and Y space.
A comparison of the results will be made to determine the differences obtained, if any,
using the two methods. The results of the SAS® analysis will also be used to evaluate the

basic assumptions inherent in the least squares best fit methodology of analysis.

Summary
This chapter has reviewed the data that will be used for this research, the
methodology that will be used to select and analyze data points to be used in the

calibration, and the statistical techniques to be used to perform the calibration, validation,

and comparison.
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IV. Analysis and Findings

Chapter Overview

This chapter presents the analysis and findings of the calibration effort on REVIC.
The analysis of the SWDB begins with a normalization of SLOC for input into REVIC.
Results of the original estimates, before calibration are given. The calculations to calibrate
REVIC are made and the resulting estimates after calibration are compared with the
original estimates. The resulting cost estimating relationship (CER) obtained for each

operating environment, as a result of the calibration, is provided.

Military Ground

The REVIC algorithm was calibrated to the Military Ground operating
environment using eight of the eleven projects listed in Table 4-1. Projects used to
calibrate the model had a mean of 408.1 MM with a standard deviation of 233.3 MM.
The projects chosen at random as controls, and not included in the calibration of REVIC,
were project numbers 2517, 2610, and 2612. The controls were used to measure the

change in REVIC’s estimating accuracy after calibration.

Table 4-1: Military Ground Calibration

ProjectNo. | KDSI, | II; | MM., | MM, Q; MM;Q; Q;
2497 10.000 1.126 66..2 89.4 17.85 1,595.42 318.48
2501 106.200 1.324 1,586.1 542.6 35747 | 193,962.24 127,783.37
2510 43.437 0.895 306.7 193.6 82.65 16,001.48 6,831.35
2517 90.000 0.697 684.4 235.3 154.28 36,302.08 23,803.86
2521 97.087 0.486 522.5 954.0 117.82 | 112,403.01 13,882.26
2526 6.681 0.838 27.0 208.8 8.19 1,709.17 67.01
2527 7.457 0.838 30.6 232.5 9.34 2,171.42 87.73
2528 21.588 0.838 109.7 673.8 33.44 22,533.57 1,118.43
2610 14.536 0.838 68.3 453.7 20.81 9,441.50 432.85
2611 11.840 0.838 534 370.0 16.27 6,018.22 264.55
2612 9.899 0.838 43.1 309.0 13.12 4,054.39 172.16
Total 356,394.52 150,352.81

Calibration produced the following algorithms:

(1) Calibration of the coefficient only.
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MM = 2.370 (KDSD)"*° (IT) (Eq. 4.1)
(2) Calibration of the coefficient and exponent.
MM = (84.868) (KDSD)**™* (TD). (Eq. 4.2)
(3) Calibration using SAS and ignoring the effort adjustment factors.
MM = (81.2126) (KDSI)**** (Eq. 4.3)
Note the near similar results obtained for equations 4.2 and 4.3. A detailed account of the
calculations and methodologies can be found in the military ground worksheets in
Appendix C.

Using the predicted values for effort obtained from each of the three equations
above (Egs. 4.1, 4.2, 4.3), the MRE, MMRE, RMS, and RRMS were calculated.
Although all four measures look at the estimating error in different ways, in all instances, a
smaller value means that, for that data point or for that control group, the model did a
better job of predicting the actual effort. A summary of the changes produced by
calibration are noted in Tables 4-2 and 4-3. Results were mixed with no one calibration
method consistently producing superior results. Looking first at the MRE, no conclusions
could be drawn (Table 4-2).

Table 4-2: Calibration Effects on Military Ground MRE

Project No. | Prior to Calibration | Calib. of Coeff. | Calib. of Coeff & Exp. Calib. Using SAS
2517 1.91 1.30 1.80 2.38
2610 0.85 0.89 0.45 0.26
2612 0.86 0.90 0.33 0.08

Since the MMRE is more meaningful than the MRE, this was the next statistic to
be examined. For the model to be acceptable as an estimating tool, the MMRE should be
less than, or equal to 0.25. (Conte, Dunsmore & Shen, 1986). Obviously, if one looks at
the MMRE, calibration did not sufficiently improve the model so as to make REVIC a
useful model for estimating military ground software development. Table 4-3 summarized

the effect of the calibration on the MMRE, and on three other statistics, the Root Mean
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Square Error (RMS), the Relative Root Mean Square Error (RRMS), and the prediction

level test (PRED).

The RMS represents the mean value of the error minimized by the regression

model. From the RMS, we obtain the RRMS. (Conte & all, 1986).

Table 4-3: Calibration Results on Military Ground Estimates

Statistical Test | Prior to Calib. | Coefficient Calib. | Coeff. & Exp. Calib. | SAS Calib.
MMRE 1.21 1.03 0.86 0.91

RMS 374.58 332.62 227.10 331.17
RRMS 1.13 1.00 0.68 1.00
PRED (.25) 0% 0% 0% 33%

Unfortunately, the first four criteria, MRE, MMRE, RMS, and RRMS, are often
not in agreement. In a situation where the criteria do not agree, no determination can be
made as to which model is best except by making a subjective judgment on the relative
importance of the individual evaluation criteria. In this case, one might want to select the
model which makes predictions that have the smaller average errors (Conte et al, 1986).

In general, it appears that calibration resulted in some improvement in REVIC’s
estimating ability in all instances. However, the simultaneous calibration of the coefficient
and exponent, using the effort adjustment factor (EAF) as a constant multiplier (Boehm’s
methodology) appears to have provided the most improvement. None of the calibration
efforts produced a model with the desired estimating accuracy. The prediction level test
(PRED) at the 25% level (Table 4-3) reveals that 0% of the predicted values fell within
25% of their actual values for the coefficient only and for the simultaneous coefficient and
exponent calibration. Only the calibration using SAS®, and ignoring the constant
multipliers, resulted in an improvement with 33% of the predicted values falling within
25% of their actuals. A further examination of the scatter plot and residuals of the sample

data used to calibrate REVIC provides further insight (Figures 4-1 and 4-2).




In Figure 4-1, it appears that we may have two distinct and separate relationships
being modeled by the data with projects 5,6,7, 8, and (perhaps) 4 representing one
relationship and projects 1, 2, and 3 modeling another relationship. An examination of
the residuals (Figure 4-2) reinforces this suggestion. If this should be the case, no useful
relationship can be obtained using the least squares best fit (LSBF) methodology within
the constraints of the REVIC algorithm because the algorithm is limited to a single
independent variable (SIV). This would make REVIC inappropriate for predicting the
effort for development projects with multiple independent variables (MIV), such as the

military ground environment appears to have.

Military Ground
Plot of LEFFORT*LKDSI. Legend: 1 = 1 obs, 2 = 2 obs, etc.
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Figure 4-1. Military Ground Scatter Plot
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Plot of Residuals*LKDSI. Legend: 1 = 1 obs, 2 = 2 obs, etc.
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Figure 4-2. Military Ground Residuals

The Wilcoxon Signed-Rank test was carried out on all three--the coefficient only,
the coefficient and exponent, and the SAS®calibrations, to test the hypothesis that the
relative frequency distributions resulting from each calibration was identical to the actual
distribution. Because the amount of data was small, the test was conducted using & =
0.10, which resulted in the critical value of T (T.s) = 6. Therefore, if the calculated value

of T (Tcac) proved to be less than or equal to 6, the hypothesis that the relative frequency
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distributions of the two populations were identical could be rejected. Obviously, the
hypothesis that the distributions were identical could not be rejected.

Table 4-4: Military Ground Wilcoxon Signed Rank Tests

Pre-Calibration [ Coeff Only Coeff & Exp | SAS Log-Log |
T 6 6 6 6

cririsat

T 10 8 17 14

meirmtara’

Finally, the assumptions of linear regression were examined. If the assumptions
are met, the residuals should be approximately normally distributed with a mean of zero (i
=0) and a variance of one (6> = 1). To do this, the Wilk-Shapiro/Rankit Plot of Residuals
was used. First the order statistics of the sample were determined. This was done by
reordering sample values by their rank. If the residuals are normally distributed, the plot
of rankits against the ordered statistics should result in a straight line except for random
variation. A systematic departure of the rankit plot from a linear trend indicates non-
normality, as does the small value for the Wilk-Shapiro statistics. One, or a few points,
departing from the linear trend near the extremes of the plot are indicative of outliers.
Note that the normality plot in Figure 4-3 shows both asterisks (*) and plus signs (+). The
plus signs from a straight line. The asterisk signs represent the sample. If the sample is
from a normal distribution, the asterisks form a straight line and thus cover most of the
plus signs. As can be seen from the Military Ground Rankit Plot of residuals, in Figure 4-
3, most of the asterisks in the plot for Military Ground cover the plus signs. Therefore,
we can conclude that the residuals are normally distributed and the assumptions of linear
regression are met by the Military Ground data set. This conclusion is further reinforced
by additional tests for normality. Looking at the outputs in Appendix C, page C-1, the
bottom line of the Moments table shows the results for normality. The column labeled
W:Normal gives the value of the test statistic. The test statistic, W, is greater than zero

and less than or equal to one. Values of W that are too small indicate that the data are not
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a sample from a normal distribution. The second column, labeled Prob < W, contains the
probability value, which describes how doubtful the idea of normality is. Probability
values (p-values) can range from zero to one. Values very close to zero indicate the data
are not a sample from a normal distribution and produce the most doubt. (Schlotzhauer &
Littell, 1987). For the Military Ground, this researcher concluded the data are normally

distributed.

Univariate Procedure
Variable=Residuals

Normal Probakbility Plot
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Figure 4-3: Military Ground Normality Test

Unmanned Space

For the second calibration effort, the REVIC algorithm was calibrated to the
Unmanned Space operating environment using nine of the thirteen projects listed in Table
4-5. Projects used to calibrate the model had a mean of 263.19 MM with a standard
deviation of 100.34 MM. Projects chosen at random as controls, and not included in the
calibration of REVIC, were Project numbers 77, 78, 82, and 306. The controls were used
to measure the change in REVIC’s estimating accuracy after calibration.

Calibration produced the following algorithms:

(1) Calibration of the coefficient only.

MM = 1.5274 (KDSD'* (IT) (Eq. 4.4)
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Table 4-5: Unmanned Space Calibration

Project No. | KDSI; | [ | MM., | MM, Q; MM,;Q; Qf
74 11.700 1.366 86.6 80.0 26.14 2091.05 683.20
75 116.800 2.131 2,135.6 912.0 644.93 588,179.25 415,939.08
76 14.000 1.392 109.5 115.0 33.04 3799.19 1,091.40
77 56.200 2.131 887.7 523.0 268.08 140,205.84 71,866.89
78 48.300 1.188 412.5 478.0 124.61 59,563.58 15,527.65
79 50.300 1.188 433.1 432.0 130.83 56,517.35 17,115.75
80 69.450 1.188 637.9 296.0 192.67 57,031.51 37,123.27
81 22.900 1.188 168.5 164.0 50.89 8,345.70 2,589.63
82 16.300 1.188 112.1 140.0 33.84 4,737.6 1,145.15
83 6.800 1.009 334 57.0 10.07 573.82 101.35
306 9.400 0.566 20.4 69.4 8.33 578.10 4,815.57
2516 48.814 0.684 269.5 197.5 72.66 14,347.91 5279.82
2518 18.004 | 1.001 142.5 115.2 32.13 3702.37 1,032.18
Total 734,588.14 480,955.68

(2) Calibration of the coefficient and exponent.
MM = 10.8489 (KDSD)**” (ID) (Eqg. 4.5)
(3) Calibration using SAS® and ignoring the effort adjustment factors.
MM = 9.6888 KDSI*** (Eq. 4.6)
Here again, the algorithms between the second and third calibration produced coefficients
and exponents with similar results (Eqgs. 4.5 and 4.6), implying that the effort adjustment
factor (EAF) may not be the major cost driver it is thought to be. A summary of the
calculations and methodologies for the unmanned space operating environment can be
found in Appendix D.
In the same manner of analysis used for the military ground environment, the
MRE, MMRE, RMS, RRMS, and PRED were calculated. A summary of the changes

produced in the MRE, by each calibration, is noted in Table 4-6.

Table 4-6: Calibration Effects on Unmanned Space MRE

Project No. | Prior to Calibration | Calib. of Coeff. | Calib. of Coeff & Exp. | Calib. Using SAS
77 0.6973 0.2172 0.1098 0.3426
78 0.1370 0.6017 0.4004 0.3709
82 0.1993 0.6307 0.1421 0.1793
306 0.7061 0.8646 0.6066 0.0159
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The effect of calibration on the mean magnitude of relative error (MMRE), the
Root Mean Square Error (RMS), the Relative Root Mean Square Error (RRMS), and the

prediction level test are summarized in Table 4-7.

Table 4-7: Calibration Results on Unmanned Space Estimates

Statistical Test | Prior to Calib. Coefficient Calib. Coeff. & Exp. Calib. SAS Calib.

MMRE 0.435 0.579 0.315 0.227
RMS 187.400 163.566 102.588 126.668
RRMS 0.619 0.541 0.339 04186

PRED (.25) 50% 25% 50% 50%

Keeping in mind that, in all cases, a smaller value means better predicting, once
again results were mixed. Based on the MMRE, which is more meaningful than the MRE,
only the SAS®calibration of coefficient and exponent, which excluded the EAF as a
constant cost multiplier, produced a model with an acceptable estimating accuracy. If one
focuses on the model with the smaller mean values of errors, it appears that the model
produced using Boehm’s methodology for simultaneous calibration of the coefficient and
exponent produced the best model. However, since the RRMS is greater than 0.25 in all
cases, none of the calibration attempts produced an acceptable model. Based on the
prediction level test, in no instance did calibration improve the model’s estimating ability.
Fifty percent of the predicted values were falling within 25% of their actuals before the
model was calibrated. Calibration did not improve upon the predictions; in fact, the
coefficient only calibration actually made the model predict less accurately!

Results obtained from attempts to calibrate to the unmanned space operating
environment were especially disappointing because this effort was expected to be more
successful than the attempt to calibrate to the Military Ground operating environment. An

examination of the scatter plot, when the log of effort is plotted against the log of KDSI,
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reveals a more homogeneous data set with a very well defined relationship, as can be seen

by examining Figures 4-4.

Unmanned Space
Plot of LEFFORT*LKDSI. Legend: 1 = 1st obs, 2 = 2nd obs, etc.

LEFFORT

7.0 +

1
o
+

LKDSI
Figure 4-4. Unmanned Space Scatter Plot

An examination of the residual plot, in Figure 4-5, provides a clue as to why the

calibration did not produce better results. Based on the residuals, it appears that the data
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set is highly heteroscedastic with the errors becoming greater as the size of the program

developed becomes larger.

Plot of Residuals*LKDSI. Legend: 1 = 1lst obs, 2 = 2nd obs, etc.

————— B i it Attt e S ettt
RESIDUAL
0.4 + +
4 2
0.3 + +
0.2 + +
3
0.1 + +
7
6
R
e 0.0 + +
s
i
4 1
u 9
a -0.1 + +
1
-0.2 + +
-0.3 + +
5
-0.4 + +
8
-0.5 + +

LKDSI
Figure 4-5. Unmanned Space Residuals

Interestingly, information received from MCR, following the calibration of REVIC

to the Unmanned Space operating environment, revealed that the database was in error
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and that the Unmanned Space database actually contained data for two operating
environments--Unmanned Space and Military Ground in support of Unmanned Space.
Most of the projects selected from Unmanned Space to calibrate REVIC were actually not
unmanned space projects. Only two of the projects initially identified as unmanned space
projects, projects 306 and 2518, were correctly identified. All other projects were ground
based projects in support of unmanned space programs.

In light of this knowledge, it is interesting to note that when project 306 was used
as a control project to validate the calibration effort, it produced the largest magnitude of
relative error in all instances except for the calibration using SAS®, producing in that
instance, the smallest MRE value of all the control projects.

The Wilcoxon Signed-Rank test was again carried out on all three calibrations--
the coefficient only, the coefficient and exponent, and the SAS®calibrations, to test the
hypothesis that the relative frequency distributions resulting from each calibration was
identical to the actual distribution. As with Military Ground, because the amount of data
was small, the test was conducted using o = 0.10, which resulted in a critical value of T
(Tem) = 8 . Therefore, if the calculated value of T (Tea) proved to be less than or equal to
8, the hypothesis (Ho) that the relative frequency distributions of the two populations were
identical could be rejected. Obviously, examining the results in Table 4-8, the hypothesis
that the distributions were identical could be rejected for the coefficient only calibration.
The hypothesis could not be rejected for the other predictions. These results appear
logical when one recalls that the coefficient only calibration produced a model which
actually predicted with a greater error than the uncalibrated model.

Table 4-8: Unmanned Space Wilcoxon Signed Rank Tests

Pre-Calibration | Coeff Only | Coeff & Exp | SAS Log-Log
G 8 8 8 8

T oiraran 17 1 15 10
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Finally, the assumptions of linear regression were examined to determine if the
assumptions of least squares best fit are met. To do this, once again, the Wilk-
Shapiro/Rankit Plot of Residuals was used. As stated previously, if the standardized
residuals are normally distributed, the plot of rankits against the ordered statistics should
result in a straight line except for random variation. A systematic departure of the rankit
plot from a linear trend indicates non-normality, as does the small value for the Wilk-
Shapiro statistics. One or a few points departing from the linear trend near the extremes
of the plot are indicative of outliers. As can be seen from the Unmanned Space Rankit
Plot of Residuals , Figure 4-6, the residuals appear to have a heavy tail, indicating that the
assumptions of linear regression are not met and the data for Unmanned Space are not a
sample from a normal distribution. Examining additional results from the test for
normality, included in Appendix D, page D-5, reinforces this finding. The second column,
labeled Prob < W, contains the probability value which describes how doubtful the idea of
normality is. Values close to zero indicate the data do not adhere to the assumptions of
normality. The Unmanned Space statistics reveal a W value of 0.85725 and a Prob <W of

0.1392, thus supporting this researcher’s initial findings.

Univariate Procedure
Variable=Residuals

Normal Probability Plot

275+ * ++++
++++
+++++
+*++
75+ +4+ 4+
+¥44**
Fppx g
++++
-125+ *pptt+ *
B e e e e e e D el &
-2 -1 0 +1 +2

Table 4-6: Unmanned Space Normality Test
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Summary
This chapter has presented the results of the calibration effort on the Military
Ground and Unmanned Space data sets. The techniques used and the resulting algorithms

are presented with supporting documentation to be found in Appendices C and D.
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V. Conclusions and Recommendations

Chapter Overview
This chapter addresses each of the issues identified for research in this effort and
draws some conclusions based on the results of the REVIC calibration effort. Some

recommendations for future areas of effort are offered.

Conclusions

ISSUE: Input parameters which most strongly influence software costs are not
easily identified. The combined result of the 19 attributes which REVIC uses as a
constant multiplier appear to be among the less influential of the many factors which
determine software development cost and may, frequently, even result in a greater
estimating error. For that reason, it is difficult to conclude that any one of the 19
parameters have a strong influence upon software development costs. The negligible
effect of the attributes as constant multipliers were best demonstrated when comparisons
were made between the results obtained using Boehm’s coefficient and exponent
calibration methodology and the results obtained using SAS®.

How can this be, when it is commonly acknowledged that software costs are
influenced by such attributes as management abilities, support software tools, and
personnel capabilities? One reason for such negligible effects may be due to the manner in
which attribute data is made available. As a rule, the contractor provides the ratings for
these parameters. As a result there remains the issue of standardizing the largely
subjective opinions of various contractors to ensure that the ratings of nominal, high, etc.
provide a standard and normalized measure. To do otherwise results in qualitative factors
which are difficult to standardize across projects and contractors for calibration purposes.

With this scenario, attributes may best be addressed by confining calibration to a single
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contractor and setting all nineteen attributes to “nominal” or to a value of “1.” By doing
this, one makes the assumption that, for an individual contractor, management skills,
software tools available for development, and personnel capabilities and experience are
relatively constant or fluctuate very little from project to project. Such an assumption can
permit the software cost estimator to omit the subjective evaluation of the nineteen
attributes and derive an algorithm based on only one independent variable, KDSI.
Limiting data by contractor would also tend to minimize the impact of two factors which
Walker felt contributed to a poor database--errors in data collection and lack of
consistency among data sets. This is because we could expect the errors and omissions in
data collection within a company to be more consistent than errors made across multiple
companies and, therefore, it becomes unnecessary to quantify them as additional variables.
This approach would also minimize, or tend to make constant such variables as: (1)
observational bias, (2) inconsistent definitions, and (3) differences in local vs. global
frames of reference--all problems which Boehm found to be frequent sources of software
data collection problems.

ISSUE: The effect of the software development environment on model
performance is also nebulous to this researcher, but appears to have a greater effect than
the individual REVIC attributes. This was best illustrated when two environments,
Unmanned Space and Military Ground in Support of Space, were incorrectly identified as
belonging in the same environment. Even though the data appeared highly linear when
plotted, further analysis revealed the sample data to be heteroscedastic and lacking a
normal distribution. In contrast, the Military Ground data, when plotted, appeared to have
a questionable linear relationship between KDST and effort; however, tests for normality
showed the sample data to consist of a normal distribution.

The probability that more than one independent variable (KDSI) may act as a

major cost driver of software development cost is highly likely. However, no evidence of
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any prior research along this line was uncovered in the literature reviewed by this
researcher during the literature search. A second qualitative or quantitative independent
variable is suggested by the analysis of sample data for Military Ground (Figure 4-1, and
4-2). Upon examination of the sample data for possible cost driver candidates, variables
which appeared as likely candidates included not only the contractor, but the program
language , the software development model (e.g. waterfall, spiral, prototype or
incremental), type of contract, and reliability requirements as evidenced by the level of
documentation, quality assurance and testing required. As can be seen when comparing
Military Ground and Unmanned Space, Military Ground data has a greater variance than
does the Unmanned Space data. A major difference noted especially between the Military
Ground and Unmanned Space data was the homogeneity of the program language and the
number of contractors represented by the sample data used for calibration. The
Unmanned Space sample data consisted almost entirely of projects developed in the Jovial
language. Most data points used in calibrating to the Unmanned Space operating
environment also come from one contractor. On the other hand, the Military Ground
sample data represented six contractors and several program languages; and, as observed
earlier, the Military Ground sample data also contained a greater variety of development
methods and reliability requirements. When one compares the Unmanned Space scatter
plot to the Military Ground scatter plot, an obvious difference is noted. What role the
various variables identified above play in this difference is still undetermined. This
researcher can only conclude, as Walker, Thibodeau, and others have, that model
performance is very much environment dependent; and that we are, as of today, still
unable to measure all major cost drivers of software development with any degree of
objectivity. Therefore the problem remains one of identifying those environmental factors

which are quantifiable and have the most impact on model performance.
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ISSUE: The calibration method which produced the best results were the
simultaneous coefficient and exponent calibration. There were two methods which
accomplished this--Boehm’s methodology using the Effort Adjustment Factor (EAF), and
the simpler method of using a standard statistical software package and setting the EAF
equal to one. Care should be used in the selection of a calibration method as some
calibration efforts may result in a model which estimates less accurately than the default
model. This was noted to be the case, in one instance, when the coefficient only
calibration method was used during this research project.

ISSUE: Although calibration, in most instances, improved the estimating ability of
REVIC, the extent to which calibration influenced the accuracy of the software estimates
was most unimpressive. In no instance did calibration, using the single independent
variable KDSI, produce a model that estimated within 25% of the actual value more than
50% of the time. This researcher has been led to conclude that calibration may only
improve the accuracy of the REVIC software estimate in those cases where KDSI is the
only variable and all other factors such as contractor, development model, software
environment, and personnel and software attributes remain constant across projects.

ISSUE: Circumstances in which REVIC may be most appropriate are those
circumstances where all independent variables except KDSI can be standardized and thus
be excluded from the equation. Since the REVIC algorithm provided by the model can
only recognize one independent variable, the REVIC model would not be an appropriate
model to use for estimating when there seems to be a number of qualitative and/or
quantitative cost drivers for software development cost. In situations where multiple
independent variables are suspected, some other method of estimating software

development cost should be used.
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Recommendations

Several areas of further study need to be pursued. Included among these are:

(1) A search for other independent variables which drive software cost.

(2) A further examination of the results obtained when calibrations are limited to
projects developed by a single contractor, making the calibration contractor specific.

(3) Further analysis of the impact the REVIC attributes have on effort and the
accuracy of the values assigned to the ratings “nominal,” “high”, etc.

(4) Further analysis of the impact different software program languages have on
estimating accuracy.

(5) The impact that different development methods (i.e. waterfall, prototype) have
on effort and whether the development method is a cost driver.

(6) The kind of contract (FFP, CPAF, etc.) used in the development effort and the
contract’s effect on cost.

(7) Identification of other environmental factors which might impact estimating

accuracy.

Summary
This chapter has summarized the insights and possibilities which have emerged as a
result of the research effort. Some conclusions are reached and recommendations made

for further study.
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Appendix A. Glossary

Algorithm - A mathematical set of ordered steps leading to the optimal solution of a
problem in a finite number of operations.

Analogy - an estimating methodology that compares the proposed system to similar,
existing systems.

Attributes - Metrics used to measure some aspect of software development such as
quality, complexity, or language and which serve as constant multipliers in the algorithms
used in REVIC and COCOMO software cost estimating models.

Calibration - The adjustment of selected parameters of a given model to get an expected
output with known inputs. In the world of statistics this effort is known as model
building. For this research effort, the models already exits and will only be modified.

COCOMO - The Constructive Cost Model, a software cost estimating model developed
by Barry Boechm.

Cost Estimating- The collecting and scientifically studying costs and related information
on current and past activities as a basis for projecting costs as an input to the decision
process for a future activity.

Cost Model - A tool consisting of one or more cost estimating relationships, estimating
methodologies, or estimating techniques. Used to predict the cost of a system or some
element of a system.

CSCI, CSC, and CSU - Large software development efforts are generally broken down
into smaller, more manageable entities called computer software configuration items
(CSCIs). Each CSCI may be further broken down into computer system components
(CSCs) and each CSC may be further broken down into computer software units (CSUs).

Delivered Source Instructions - Equivalent to 1,000 source lines of code.

Embedded Programs - Software programs with tight constraints, such as on-board
fighter aircraft programs.

Incremental Development - A software process model whose stages consist of
expanding increments of an operational software product, with the direction of evolution
being determined by operational experience.




Linear Cost Model - A cost estimating model which is linear in its parameters and in its
independent variables. A linear cost model estimates costs using algorithms whose
parameters or independent variables contain no exponents and are not multiplied or
divided by another parameter or independent variable. A model which is linear in the
parameters and the independent variable is also called a first-order model.

Macro Cost Estimation Model - A cost model that uses gross estimating parameters to
arrive at an estimation.

Manmonth - Generally consists of 152 man hours of effort.

Normalization - The process of rendering constant or adjusting for known differences.

Organic Programs - Software programs which are usually small, stand-alone programs,
such as payroll programs, developed by in-house teams.

Parameters - The parameters (B and B,) in a linear cost model are also called regression
coefficients. B is the slope of the regression line. By is the Y intercept of the regression
line. Parameters of a normal distribution are the mean (l) and the standard deviation (o).

Parametric Model - A model that uses one or more cost estimating relationships or
algorithms, based on the project’s technical, Iphysica, other characteristic, to estimate
costs associated with the development of that item.

Program Evaluation and Review Technique - A network or diagram consisting of
arrows and end points. The network represents project activities, their associated
durations, and precedence relationships between pairs of activities.

Phase Sensitivity - a procedure which examines the various phases in software
development to determine the impact of changing specific conditions in a particular phase
will have upon the variation of the estimate.

Prototype Development Method - An iterative software process model.

Rayleigh Distribution - A probability distribution whose curve is characterized by a
rather steep buildup as coding begins, followed by a long tapering-off period before the
system is ready for delivery. It can also be used to describe the rate of defect discovery

and the application of people to a project.

Regression Analysis - A statistical tool that uses the relation between two or more
quantitative variables so that one variable can be predicted from the other, or others.

REVIC - A software cost estimating model developed by Raymond Kile.
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Semi-detached Programs - Programs containing both embedded and organic
characteristics, such as flight simulator programs.

Sensitivity Analysis - A procedure that examines the variation in an estimate subject to
changing specific conditions on which it was based.

Software - The combination of computer programs, data, and documentation which
enables computer equipment to perform computational or central functions.

Software Maintenance - Since software does not wear out, SW maintenance refers to
corrective, adaptive, or perfective changes made to software.

Software Development Cycle - The software development cycle is typically broken into
8 phases: (1) System Requirements Analysis and Design, (2) Software Requirements
Analysis, (3) Preliminary Design, (4) Detailed Design, (5) Code and CSU Testing, (6)
CSC Integration and Testing, (7) CSCI Testing, and (8) System Testing.

Source Lines of Code (SLOC) - All program instructions created by the project
personnel and processed into machine code. It includes job control, format statements,
etc., but does not include comment statements and unmodified utility software.

Spiral Software Development Model - A risk driven, cyclical software process model
with a repeating set of activities performed on an increasingly more detailed product. It
can accommodate most other process models, such as the Waterfall Development Model.
In addition, it provides guidance as to which combination of other models best fits a given
software situation.

Validation - Testing a specific model using known inputs and establishing the output to
within some error range. This is independent and non-iterative with calibration. In the
world of statistics, this is often called cross-validation since it will use a portion of an
original data set kept out of the model building/calibration effort.

Waterfall Development Model - A document driven software process model which
stipulates that software be developed in successive stages. It determines the order of the
stages involved in software development and evolution and establishes the transition
criteria for progressing from one stage to the next.




Appendix B. Acronyms

ACAP -- Analyst’s Capability

ADSI -- Adapted Delivered Source Instructions
AEXP -- Applications Experience

AFCAA -- Air Force Cost Analysis Agency

CER -- Cost Estimating Relationship

CIM -- Corporate Information Management

CM -- Code Modification

COCOMO -- Constructive Cost Model
COSTMODL -- Cost Model

CPLX -- Code Complexity

CSC -- Computer Software Component

CSCI -- Computer Software Configuration Item
CSU -- Computer Software Unit

DATA -- Data Base Size

DM -- Design Modification

DoD -- Department of Defense

DSI -- Delivered Source Instructions

EAF -- Effort Adjustment Factor also denoted as I'1
EDSI -- Equivalent Delivered Source Instructions
HOL -- Higher Order Language

HPCC -- High Performance Computing and Communications
IM -- Retesting of Modified code

KDSI -- Thousands of Delivered Source Instructions
LEXP -- Language Experience

MCR -- Management Consulting and Research, Inc.
MM -- Man-month

MMRE -- Mean Mangitude of Relative Error
MODP -- Modemn Programming Practices

MRE -- Magnitude of Relative Error

PCAP -- Programmer’s Capability

PERT -- Program Evaluation and Review Technique
PRED -- Prediction Level Test

PRICE-S -- Programmed Review of Information for Costing and Evaluation Software

RELY -- Required Reliability

REVIC -- Revised Enhanced Version of Intermediate COCOMO

RISK -- Risk associated with platform
RMS -- Root Mean Square Error

RRMS -- Relative Root Mean Square Error
RUSE -- Required Reusability
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RVOL -- Requirements Volatility

SAS® -- System for Elementary Statistical Analysis by SAS Institute, Inc.
SASET --Software Architecture, Sizing, and Estimating Tool

SBA -- Standards-Based Architecture

SCED -- Schedule Compression/Stretch Out

SDC -- Systems Development Corporation

SECU -- Security Classification

SEER-SEM -- System Estimation & Evaluation of Resources Software Estimation Model
SLOC -- Source Lines of Code

SMC -- Space and Missile Systems Center

SSCAG -- Space Systems Cost Analysis Group

SWDB -- Software Database

TIME -- Processing or Throughput Time Constraints

TOOL -- Design and Programming Tools

TURN -- Turnaround Time

VEXP -- Virtual Machine Experience

VIRT -- Virtual Machine Volatility




Military Ground Operating Environment

Appendix C. Military Ground Worksheets

SMC SWDB REVIC Project No.
PARAMETER Equiv 2497 2501 2510 2517 2521 2526 2527 2528 2610 2611 2612
4.3.01 Appl None )
Cmplx
4.3.02 Turn- None
around
4.3.03 Reqgr RVOL NOM VH HI NOM NOM NOM NOM NOM NOM NOM NOM
Volatil
4.3.04 Rehost None
Regr
4.3.05 Display None
Reqr
4.3.06 Reuse RUSE NOM HI NOM NOM NOM NOM NOM NOM NOM NOM NOM
Reqgr
4.3.07 Security SECU (Note 1)
Level
4.3.08 Memory STOR NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM
Constr
4.3.09 Time TIME NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM
Constr
4.3.10 Real None
Time
4.8.01 Pers AEXP LO NOM HI HI NOM NOM NOM NOM NOM NOM NOM
Exp
4.8.02 Pers Cap P/ACAP NOM HI NOM HI NOM NOM NOM NOM NOM NOM *NOM
4.8.03 Target None
Virt
4.8.04 Host None
virt
4.8.05 Prog LEXP NOM HI HI VH LO LO LO LO LO LO LO
Lang
4.8.06 Dev None
Exp
4.8.07 Dev VEXP HI VH NOM VH HI HI HI HI HI HI HI
Sys Exp
4.8.08 Target VEXP HI VH NOM VH HI HI HI HI HI HI HI
Sys EXp
4.23.01 Inher CPLX HI VH HI HI VL HI HI HI HI HI HI
Dif
4.23.02 Turn TURN HIT LO (LO) LO LO LO LO LO LO LO LO
Time
4.23.03 Term None
Respon
4.23.04 Dev Sys VIRT HI LO LO NOM NOM LO LO LO LO LO LO
Vol
4.23.05 Spec RELY VH XH NOM NOM NOM NOM NOM NOM NOM NOM NOM
Level
4.23.06 QA RELY NOM VH NOM LO NOM LO LO LO LO LO LO
Level
4.23.07 Test RELY {Note 2)
Level
4.23.08 Mult None
Level
4.23.09 Resour None
Dedic
4.23.10 Res/ None
Spprt
4.23.11 No. None
Shifts
4.23.12 Amt None
Travel
4.23.13 Modrn MODP VH HI NOM LO HI NOM NOM NOM NOM NOM NOM
Pract
4.23.14 Auto TOOL VH LO NOM LO HI NOM NOM NOM NOM NOM NOM
Tool
Note 1: Attribute not used due to incomplete data in records.
Note 2: Attribute not used due to incomplete data in records.
Note 3: Attribute denoted by (*) are subjective opinions and were not available from the

record.
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Military Ground

REVIG DATA PPINTS
Proj. No. 2497 2501 2510 2517 2521 2526 2527 2528 2610 2611 2612
Dev Yr. 1993 1993 1993 1992 1992 1992 1992 1992 1992 1992 1992
Language Ada Ada C Assy | Cobol | Cobol [ Cobol | Cobol [Cobol {Cobol |Cobol
Dev Model Mod WE |Mod WF |Unknwn |Unknwn [incrmntl [Prototyp |Prototyp |Prototyp |Prototyp |Prototyp |Prototyp
Type Contract  {FFP FFP CPAF [Unknwn| FFP FFP FFP FFP FFP FFP FFP
Mos. in Dev 40 21 24 48 45 57 57 57 57 57 57
DSi-Actual 10,000{106,200{ 43,437 | 90,000{ 97,087 6,681 7,457 | 21,588| 14,536| 11,840 9,899
New 10,000| 45,000! 43,437 76,200| 97,087| 6,681 7457 | 21,588! 14536| 11,840 9,899
EDSI* 61,200 13,800
Reused 120,000 13,800
% DM 30 100
% CH 30 100
% IM 100 100
EFFORT
Actual 80.0 418.0 181.2 196.0 735.0 202.0 225.0 652.0 439.0 358.0 299.0
Normalizd
152 hr/mm B84.2 475.8 182.4 206.3 836.5 202.0 225.0 652.0 439.0 358.0 299.0
REVIC Equiv 89.4 542.6 193.6 235.3 854.0 208.8 232.5 673.8 453.7 370.0 309.0
REVIC Est.
Pre Calibrtn 66.2] 1,586.1 306.7 684.4 522.5 27.0 30.6 109.7 68.3 534 43.1
Post Calibrtn
Coeff only 47.4| 1135.0 219.5 536.4 373.9 19.2 22.0 78.5 48.9 38.2 30.8
Coeff & Exp 315.9| 1348.7 501.0 656.7 474.4 172.0 181.1 298.4 247.9 225.0 206.9
SAS (log) 224.9 639.6 430.7 796.7 614.7 188.0 197.5 316.1 338.0 242.4 285.1
REVIC EAF 1.126 1.324 0.895 0.697 0.486 0.838 0.838 0.838 0.838 0.838 0.838
Phase Incl
SW Req X X X X X
Prelim Dsn X X X X X
Detail Dsn X X X X X X X X X X X
C&U Test X X X X X X X X X X X
CSC T&l X X X X X X X X X X X
CSCI Test X X X X X X X X X X X
Sys T&l X X X X X X X X X
OT&E X X X
*EDS! = Equivalen} DSI = (ADSI) X (AAF/100), where
ADSI| = Adapted DSl or SLOC, and
AAF = Adaptatior] Adjustment Factod = .40 (D) + .30 (CM) + .39 (IM).
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MILITARY GROUND

Military Gréund - Coefficient only calibration
Proj No. KDSI EAF MMest MMi Qi MMIQ QQ
2497 10 1.126 66.2 89.4 17.85 1,595.42 318.48
2501 106.2 1.324 1586.1 542.6 357.47| 193,962.24 127,783.51
2510 43.437 0.895 306.7 193.6 82.65| 16,001.48 6,831.40
2517 |Control
2521 97.087 0.486 522.5 954.0 117.82) 112,403.01 13,882.23
2526 6.681 0.838 27.0 208.8 8.19 1,709.17 67.01
2527 7.457 0.838 30.6 2325 9.34 2,171.42 87.23
2528 21.588 0.838 109.7 673.8 33.44| 22,533.57 1,118.40
2610 |Control
2611 11.84 0.838 53.4 370.0 16.27 6,018.22 264.56
2612 |Control
Totals 356,394.52 150,352.81

C(mean) = | Coefficient| 2.370

MM=2.370 1 (KDSI)*1.20 * (EAF)

Military Ground - Coefficient and Exponent Calibration

log(MM/EAF)*
Proj No. KDSI EAF MM log KDSI |log (KDSI)*2]log(MM/EAF)]  * log(KDSI)
ED) (a2) (d0) (d1)
2497 10 1.126 89.4 1.000 1 1.900 1.900
2501 106.2 1.324 542.6 2.026 4.105 2.613 5.293
2510 43.437 0.895 193.6 1.638 2.683 2.335 3.825
2517 |Contro}
2521 97.087 0.486 954.0 1.987 3.948 3.293 6.543
2526 6.681 0.838 208.8 0.825 0.681 2.396 1.977
2527 7.457 0.838 232.5 0.873 0.762 2.443 2.133
2528 21.588 0.838 673.8 1.334 1.780 2.905 3.876
2610 |Control \
2611 11.84 0.838 370.0 1.073 1.151 2.645 2.838
2612 |Control
Totals 10.756 16.11 20.53 28.38

log c{mean)=log coefficient 1.928745

c(mean) = 84.868

b(mean) = 0.474

Therefore:

MM=84.868 (KDSI)*0.474 * EAF




MILITARY GROUND

Before Calibration
ProjNo.  |Y(act) Y(pred) act-mean | (act-m)sq |pred-mean | (prd-m)sq (act-predt) |(act-prd)sq
2497 89.4 66.2
2501 542.6 1,586.1
2510 193.6 306.7
2517 235.3 684.4 -172.79| 29,855.52| 276.3125 76,348.60 -449.1| 201,690.81
2521 954.0 522.5
2526 208.8 27.0
2527 232.5 30.6
2528 673.8 109.7
2610 453.7 68.3 4561 2,080.50] -339.788| 115,455.55 385.4| 148,533.16
2611 370.0 53.4
2612 309.0 43.1 -99.09| 9,818.33| -364.988| 133,215.88 265.9] 70,702.81
Sum 3,264.7 (226.3] 41,754.4 (428.5) 325,020.0 202.2| 420,926.8
Mean 408.09
After calibration of cogfficient
Proj No.  |Y(act) Y(pred) act-mean | (act-m)sq |pred-mean | (prd-m)sq (act-predt) |(act-prd)sq
2497 89.4 47.40
2501 542.6| 1,135.00
2510 193.6 219.50
2517 235.3 536.40 -172.79| 29,855.52| 128.3125 16,464.10 -301.1| 90,661.21
2521 954.0 373.90
2526 208.8 19.20
2527 232.5 22.00
2528 673.8 78.50
2610 453.7 48.90 45.61| 2,080.50| -359.188| 129,015.66 404.8| 163,883.04
2611 370.0 38.20
2612 308.0 30.80 -99.09| 9,818.33| -377.288]| 142,345.86 278.2| 77,395.24
Sum 3,264.70 (226.26) 41,754.35 (608.16] 287,825.62 381.90| 331,919.49
Mean 408.09
Afier calibration of cogfficient and exponent
Proj No.  [Y(act) Y{(pred) act-mean | (act-m)sq |pred-mean | (prd-m)sq (act-predt) [(act-prd)sq
2497 89.4 315.90
2501 542.6| 1,348.70
2510 193.6 501.00
2517 235.3 656.70 -172.79| 29,855.52] 248.6125 61,808.18 -421.4| 177,577.96
2521 954.0 474.40
2526 208.8 172.00
2527 232.5 181.10
2528 673.8 298.40
2610 453.7 247.90 45.61| 2,080.50| -160.188 25,660.04 205.8| 42,353.64
2611 370.0 225.00
2612 309.0 206.90 -99.08] 9,818.33] -201.188 40,476.41 102.1] 10,424.41
Sum 3,264.70 (226.26] 41,754.35 (112.76] 127,944.62 (113.50] 230,356.01
Mean 408.09
After calibration using SAS
Proj No.  [Y(act) Y(pred) act-mean | (act-m)sq [pred-mean | (prd-m)sq (act-predt) |(act-prd)sq
2497 89.4 224.90
2501 542.6 639.64
2510 193.6 430.69
2517 235.3 796.70 -172.79] 29,855.52| 388.6125| 151,019.68 -561.4] 315,169.96
2521 954.0 614.74
2526 208.8 188.00
2527 232.5 197.53
2528 673.8 316.10
2610 453.7 338.00 45.61| 2,080.50{ -70.0875 4,912.26 115.7| 13,386.49
2611 370.0 242.35
2612 309.0 285.10 -99.09| 9,818.33| -122.988 15,125.93 23.9 571.21
Sum 3,264.70 (226.26) 41,754.35 195.54| 171,057.86 (421.80) 329,127.66
Mean 408.09
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Military Ground Normality Test
Univariate Procedure

Variable=Residuals

Moments
N 8 Sum Wgts
Mean 51.3375 Sum
std Dev 215.1114 Variance
Skewness 0.368567 Kurtosis
Uss 344994.7 CSS
cv 419.0142 Std Mean
T:Mean=0  0.675019 Pr>|T|
Num *= 0 8 Num > 0
M(Sign) 1 Pr>=|M
Sgn Rank 4 Pr>=|S
W:Normal 0.935542 Pr<Ww
Quantiles (Def=5)
100% Max 357.7 99%
75% Q3 233.45 95%
50% Med 27 .85 90%
25% Q1 -116.25 10%
0% Min -237.1 5%
1%
Range 594.8
Q3-Q1 349.7
Mode -237.1
Extremes
Lowest Obs Highest
-237.1¢ 3) 20.7¢(
-135.5¢( 1) 35¢(
-97( 2) 127.6(
20.7¢ 5) 339.3¢
35 6) 357.7¢
Stem Leaf #
3 46 2
2
13 1
0 24 2
-0
-1 40 2
-2 4 1
———— e — = —

Multiply Stem.Leaf by 10**+2

8

410.7
46272.91
-1.00182
323910.4
76.05336
0.5213

5

0.7266
0.6406
0.5722

357.
357.
357.
-237.
-237.
-237.

[N S RN

Obs

~ > 00 oy U

Boxplot
|

o ——— +
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csC>ed milgrnd.dat

89.4 10
542.6 106.2
193.6 43.437
954.0 97.087
208.8 6.681
232.5 7.457
673.8 21.588
370.0 11.840
OBS

O ~NoyUTix WK

1:51:44 PM  *--%

EFFCRT

89.
542.
193.
954.
208.
232.
673.
370.

O 00U OO O

AIR FORCE
INSTITUTE OF TECHNOLOGY

PR R I

Military Ground

SIZE LEFFORT
10.000 4.49312
106.200 6.29637
43 .437 5.26579
97.087 6.86066
6.681 5.34138
7.457 5.44889
21.588 6.51293
11.840 5.91350

C-6

NWNRER Wk ND

LSIZE

.30259
.66532
77131
.57561
.89927
.00915
.07214
.47148
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Military Ground
Plot of LEFFORT*LSIZE. Legend: 1 = lst obs, 2 = 2nd obs, etc.
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Model: MOD

EL1

Military Ground

Dependent Variable: EFFORT

Source D
Model
Error
C Total
Root MSE
Dep Mean
C.V.
Variable DF
INTERCEP 1
SIZE 1
Dep Var
Obs EFFORT
1 89.4000
2 542.6
3 183.6
4 954.0
5 208.8
6 232.5
7 673.8
8 370.0
Upper95%
Obs Predict
1 895.8
2 1443 .3
3 1041.2
4 1376.0
5 884.0
6 886.7
7 940.6
8 902.5

Sum of Res

iduals

Analysis of Variance

Sum of Mean
¥ Squares Square F Value
1 278924.90232 278924.90232 5.112
6 327356.04643 54559.34107
7 606280.94875
233.57941 R-square 0.4601
408.08750 Adj R-sg 0.3701
57.23758
Parameter Estimates
Parameter Standard T for HO:
Estimate Error Parameter=0
223.344505 116.17202787 1.923
4.857024 2.14813317 2.261
Predict std Err Lower95% Upper95%
vValue Predict Mean Mean
271.9 102.211 21.8140 522.0
739.2 168.108 327.8 1150.5
434 .3 83.394 230.3 638.4
694.9 151.362 324.5 1065.3
255.8 106.568 -4.9672 516.6
259.6 105.522 1.3606 517.8
328.2 89.824 108 .4 548.0
280.9 99.933 36.3248 525.4
Residual
-182.5
-196.6
-240.7
259.1
-46.9943
-27.0633
345.6
89.1483
0

Sum of Squared Residuals

Predicted

Resid SS

(Press)

327356.0464
673944 .0684

C-9

Prob>F

0.0645

Prob > |T]|

0.1029
0.0645

Lower95%
Predict

-352.0
34.9790
-172.6
13.8393
-372.4
-367.6
-284.2
-340.8
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Model: MODEL2

Military Ground

Dependent Variable: LEFFORT

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value
Model 1 1.71064 1.71064 4.106
Error 6 2.49990 0.41665
C Total 7 4.21054
Root MSE 0.64548 R-square 0.4063
Dep Mean 5.74658 Adj R-sqg 0.3073
C.V. 11.1:354
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0
INTERCEP 1 4.397071 0.71337287 6.164
LSIZE 1 0.442369 0.21831884 2.026
Dep Var Predict Std Err Lower95% UpperS5%
Obs LEFFORT Value Predict Mean Mean
1 4.4931 5.4157 0.286 4.7147 6.1167
2 6.2964 6.4609 0.412 5.4535 7.4682
3 5.2658 6.0654 0.272 5.4005 6.7302
4 6.8607 6.4212 0.396 5.4533 7.3890
5 5.3414 5.2372 0.347 4.3885 6.0860
6 5.4489 5.2859 0.329 4.4804 6.0914
7 6.5129 5.7561 0.228 5.1975 6.3146
8 5.9135 5.4904 0.266 4.8399 6.1408
Upper95%
Obs Predict Residual
1 7.1437 -0.9225
2 8.3342 -0.1645
3 7.7791 -0.7996
4 8.2736 0.4395
5 7.0303 0.1041
6 7.0588 0.1630
7 7.4314 0.7568
8 7.1985 0.4231
Sum of Residuals 0
Sum of Squared Residuals 2.4999
Predicted Resid SS (Press) 3.9142

C-11

Prob>F

0.0891

Prob > |T|

0.0008
0.0891

Lower95%
Predict

W W Wb W

.6876
.5875
.3517
.5688
.4442
.5129
.0808
.7822
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Appendix D. Unmanned Space Worksheets

Unmanned Space Operating Environment

SMC SWDB REVIC Project No.
PARAMETER Equiv 74 75 76 177 78 179 80 81 82 83 306 2516 2518
4.3.01 Appl Cmplx None
4.3.02 Turnaround None
4.3.03 Regr Volati RVOL NOM VH VH VH NOM NOM NOM NOM NOM NOM LO HI NOM
4.3.04 Rehost Regqu None
4.3.05 Display Reg None
4.3.06 Reuse Regqui RUSE NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM
4.3.07 Security Le SECU {Note 1)
4.3.08 Memory Cons STOR (Note 1)
4.3.09 Time Constr TIME (Note 1)
4.3.10 Real Time None
4.8.01 Pers EXp AEXP (Note 1)
4.8.02 Pers Cap P/ACAP (Note 1)
4.8.03 Target Virt Neone
4.8.04 Host Virt None
4.8.05 Prog Lang LEXP LO LO NOM LO LO LO LO LO Lo Lo NOM HI HI
4.8.06 Dev Meth Ex None
4.8.07 Dev Sys Exp VEXP LO LO NOM LO LO LO LO LO LO LO LO NOM NOM
4.8.08 Target Sys VEXP LO LO NOM LO LO LO Lo Lo LO LO VL NOM NOM
4.23.01 Inher Dif CPLX HI VH NOM VH NOM NOM NOM NOM NOM LO LO NOM HI
4.23.02 Turn Time TURN HI HI HI HI HI HI HI HI HI HI VL VL LO
4.23.03 Term Respo None
4.23.04 Dev Sys Vo VIRT HI HI HI HI HI HI HI HI HI HI LO LO LO
4.23.05 Spec Level RELY HI HI HI HI HI HI HI HI HI HI LO LO LO
4.23.06 Q& Level RELY NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM VL VL LO
4.23.07 Test Level RELY NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM LO HI
4.23.08 Mult Site None
4.23.09 Resour Ded None
4.23.10 Res/Supprt None
4.23.11 No. sShifts None
4.23.12 Amt Travel None
4.23.13 Modrn Prac MODP VH VH VH VH VH VH VH VH VH VH NOM NOM LO
4.23.14 Auto Tool TOOL NOM NOM NOM NOM NOM NOM NOM NOM NOM NOM LO NOM LO
Note 1: Attribute not used due to incomplete data in records.

This is equivalent to setting the attribute at a value of "nominal* or *"1-.
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Unmanned Space

REVIC DATA PDINTS
Proj. No. 74 75 76 7 78 79 80 81 82 83 306 2561 2518
Dev Yr. 1985 1985 1985 1985 1986 1985 1985 1985 1986 1985 1988 1989 1988
Dev Model WF WF WF WF WF WF WF WF WF WF_ {Incr-4  |Mod WF _ |[Unknown
Type Contract  [FFP FFP FFP FFP FFP FFP FFP FFP FFP FFP CPFF _|Unknown |Unknown
Mos. in Dev
DSI-Actual 71,700 [116,800 | 14,000 ] 56,200 48,300] 50,300 69,450 | 22,900| 16,300 | 6,800| 9,400 48,814 18,004
New 11,700 [116,800 | 14,000 56,200 | 48,300 | 50,300 | 69,450 | 22,900 16,300 6,800 9,000 48,675 17,344
EDSI* 400 138.8 660
Reused 500 400 660
% DM 50 B8 100
% CM 100 5 100
% IM 100 100 100
EFFORT
Actual 80.0 912.0 115.0] 523.0| 478.0f 432.0| 296.0 164.0 140.0 57.0 90.0 117 96
Normalizd
152 hr/mm 80.0] 912.0| 115.0] 523.0] 478.0] 432.0] 296.0| 164.0| 140.0 57.0 90.0 123.2 101.1
REVIC Equiv 80.0| 012.0| 115.0[ 523.0{ 478.0] 432.0| 296.0| 164.0| 140.0 57.0 69.4 197.4 115.3
REVIC Est.
Pre Calibrtn 86.6|2,135.6] 109.5] B887.7] 412.5| 433.1| 637.9| 1685| 1121 33.4 20.4 269.5 142.5
Post Calibrin
Coeff only 40.0 984.9 50,5 409.4} 190.4 199.6| 294.2 77.7 51.7 15.6 9.4 124.2 65.8
Coeft & Exp 106.011,041.9 124,7] 580.4] 286.6] 296.0| 383.1 157.7 1201 50.8 27.3 166.6 146.9
SAS (log) 85.6| 657.3 100.4] 343.8] 300.7| 311.6] 4147 155.2| 114.85 52.9 70.5 303.5 125.4
REVIC EAF 1.366 | 2.131 1.392] 2.131 1.188 1.188 1.188 1.188 1.188 1.009| 0.566 0.684 1.001
Phase incl
SW Req X X
Prelim Dsn X X X X X X X X X X X X X
Detail Dsn X X X X X X X X X X X X X
C&U Test X X X X X X X X X X X X X
CSCT&l X X X X X X X X X X X X
CSCi Test X X X X X X X X X X X X
Sys T&! X
OT&E X
*EDSI = Equivaler]t DS1 = (ADSI) X (AAF/100){ where
ADSI| = Adapted PSI or SUOC, and
AAF = Adaptatioh Adjustmient Factar = .40 (OM) + .30 [CM) + .30 (IM).




Unmanned

Space - Cogfficient only calibratio

Proj No. KDsSI EA= MMest MMi Qi MMIQ QQ
74 11.700 1.366 86.6 80.00 26.14 2,091.05 683.20
75| 116.800 2131 2,135.6 912.00 644.93| 588,179.25 415,939.08
76 14.000 1.392 109.5 115.00 33.04 3,799.19 1,091.40
77 |CONTROL 0.00 0.00
78 [CONTROL 0.00 0.00
79 50.300 1.188 433.1 432.00 130.83| 56,517.35 17,1156.75
80 69.450 1.188 637.9 296.00 192.67| 57,031.51 37,123.27
81 22.900 1.188 168.5 164.00 50.89 8,345.70 2,589.63
82 |CONTROL 0.00 0.00
83 6.800 1.009 33.4 57.00 10.07 573.82 101.35
306 [CONTROL 58.00 0.00 0.00
2516 48.814 0.684 269.5 197.46 72.66] 14,347.91 5,279.82
2518 18.004 1.001 142.5 115.24 32.13 3,702.37 1,032.18
Totals 734,588.14 480,955.68
C(mean) = | Coefficient| 1.5274
MM=1.527 t (KDSI)*1.20 * (EAF)
Unmanned|Space - Coegfficient and Exponent Calibration
loc/F M/EAF)*
Proj No. KDSi EAF MMi log KDSI |log (KDS"2|log(MM/EAF)| * =g(KDSI)
(a1) (a2) (d0) _qdt)
74 11.700 1.366 80.00 1.068 1.141 1.768 1.888
75] 116.800 2.131 912.00 2.067 4.272 2.631 5.439
76 14.000 1.392 115.00 1.146 1.313 1.917 2.197
77 |CONTROL
78 |CONTROL
79 50.300 1.188 432.00 1.702 2.897 2.561 4.358
80 69.450 1.188 296.00 1.842 3.393 2.396 4.414
81 22.900 1.188 164.00 1.360 1.850 2.140 2.910
82 |CONTROL
83 6.800 1.009 57.00 0.833 0.694 1.752 1.459
306 |[CONTROL 58.00
2516 48.814 0.684 197.46 1.689 2.853 2.460 4.155
2518 18.004 1.001 115.24 1.255 1.575 2.061 2.587
Totals 12.962 18.987 19.687 29.409
log c(mean)Elog coefficient 1.035407
c(mean) = 10.8494
b(mean) = 0.800
Therefore:
MM=10.8489 (KDSI)*0.B * EAF
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Unmanned|Space Opel
Before Calibration
Proj No. Y(act) Y(pred) act-mean | (act-m)sq pred-mean | (prd-m)sq (act-predt) {(act-prd)sq
74 80.0 86.6
75 912.0 2,135.6
76 115.0 109.5
77 523.0 887.7 259.81 67,501.81 624.51| 390,014.13 -364.7| 133,006.09
78 478.0 412.5 214.81 46,143.81 149.31 22,293.81 65.5 4,290.25
79 432.0 433.1
80 296.0 637.9
81 164.0 168.5
82 140.0 112.1 -123.19 15,175.50 (151.09, 22,827.85 27.9 778.41
83 57.0 334
306 69.4 204 -193.79 37,554.13 (242.79, 58,946.44 49 2,401.00
2516 197.4 269.5
2518 1156.3 142.5
Sum 2,368.7 1,432.7 157.6 166,375.3 379.9 494,082.2 (222.3) 140,475.8
Mean 263.19
After calibration of cogfficient
Proj No.  |Y{(act) Y(pred) act-mean | (act-m)sq pred-mean | (prd-m)sq (act-predt} |(act-prd)sq
74 80.0 40.00
75 912.0 984.90
76 115.0 50.50
77 523.0 409.40 259.81 67,501.81| 146.2111 21,377.69 113.6| 12,904.96
78 478.0 190.40 214.81 46,143.81| -72.7889 5,298.22 287.6| 82,713.76
79 432.0 199.60
80 296.0 294.20
81 164.0 77.70
82 140.0 51.70 -123.19 15,175.50| -211.489 44,727.55 88.3 7,796.89
83 57.0 15.60
306 69.4 9.40 -193.79 37,554.13| -253.789 64,408.80 60 3,600.00
2516 197.4 124.20
2518 1156.8 65.80
Sum 2,368.7 660.9 157.6 166,375.3 (391.9 135,812.3 549.5| 107,015.6
Mean 263.19
After calibration of cogfficient and|exponent
Proj No. Y{(act) Y(pred) acl-mean | (act-m)sq pred-mean | (prd-m)sq (act-predt) |(act-prd)sq
74 80.0 106.00
75 912.0] 1,041.90
76 115.0 124.70
77 523.0 580.40 259.81 67,501.81| 317.2111] 100,622.89 -57.4 3,294.76
78 478.0 286.60 214.81 46,143.81| 23.41111 548.08 191.4| 36,633.96
79 432.0 296.00
80 296.0 383.10
81 164.0 167.70
82 140.0 120.10 -123.19 15,175.50| -143.089 20,474.43 19.9 396.01
83 57.0 50.80
306 69.4 27.30 -193.79 37,554.13| -235.889 55,643.57 42.1 1,772.41
2516 197.4 166.60
2518 116.3 146.90
Sum 2,368.7 1,0144 157.6 166,375.3 (38.4 177,289.0 196.0 42,097 1
Mean 263.19
After Calibgation with SAS
Proj No. Y(act) Y(pred) act-mean | (act-m)sq pred-mean | (prd-m)sq (act-predt) |{act-prd)sq
74 80.0 85.6
75 912.0 657.3
76 116.0 100.4
77 523.0 343.8 259.81 67,501.81] 80.61111 6,498.15 179.2] 32,112.64
78 478.0 300.7 214.81 46,143.81| 37.51111 1,407.08 177.3] 31,435.29
79 432.0 311.6
80 296.0 414.7
81 164.0 155.2
82 140.0 114.9 -123.19 15,175.50] -148.289 21,989.59 25.1 630.01
83 57.0 52.9
306 69.4 70.5 -193.79 37,554.13] -192.689 37,129.01 -1.1 1.21
2516 197.4 303.5
2518 115.8 1254
Sum 2,368.7 157.6 166,375.3 (222.9 67,023.8 380.5 64,179.2
Mean 263.19
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UNMANNED SPACE NORMALITY TEST

Univariate Procedure

Variable=Residual

Moments
N 9 Sum Wgts
Mean 18.01111 Sum
Sstd Dev 113.0466 Variance
Skewness 1.093243 Kurtosis
Uss 105155.9 Css
cv 627.6494 Std Mean
T:Mean=0  0.477974 Pr>|T|
Num ~= 0 9 Num > 0
M(Sign) 0.5 Pr>=|M
Sgn Rank 3.5 Pr>=|S
W:Normal 0.875725 Pr<W

Quantiles (Def=5)

100% Max 254.7 99%
75% Q3 14.6 95%
50% Med 4.1 90%
25% Q1 -10.1 10%
0% Min -118.7 5%
1%
Range 373.4
P3-01 24.7
Mode -118.7
Extremes
Lowest Obs Highest
-118.7¢( 5) 4.1
-106.1( 8) 8.8(
-10.1¢ 9) 14.6¢
-5.6( 1) 120.4¢
4.1 7} 254 .7
Stem Leaf #
25 1
2
1
12 1
0
0 011 3
-0 11 2
-0
-1 21 2
B s e e

Multiply Stem.Leaf by 10**+2
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162.1
12779.54
1.719849
102236.3
37.68221

0.6455

1.0000
0.7344
0.1392

254.
254.
254.
-118.
-118.
-118.

NN NN

Obs

N W

Boxplot
*
*
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T F 7/23/95 - 8:58:58 PM *--*
AIR FORCE

INSTITUTE OF TECHNOLOGY

hkkhkrhhhkhhhhkrhrrhkhrrdx s

csC>ed space.dat
80 11.700 1.366
912 116.800 2.131
115 14.000 1.392
432 50.300 1.188
296 69.450 1.188
164 22.900 1.188
57 6.800 1.009
197.4 48.814 .684
115.3 18.004 1.001
[EOB]

*exit

CSC>ed spcnc.sas

filename unmanned' [bweber]space.dat';

OPTIONS LINESIZE=72;
data unmanned;
infile space;
input effort kdsi;
leffort=log(effort);
lkdsi=log(kdsi) ;
proc print;

var effort kdsi leffort lkdsi;

title 'Unmanned Space';
proc plot;

plot effort*kdsi;

plot leffort*lkdsi;
proc reg;

model effort=kdsi/p clm cli;

plot r.*kdsi;

model leffort=lkdsi/p clm cli;

plot r.*1lkdsi;
[EORB]
*exit
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Plot of EFFORT*KDSI. Legend: 1 = 1st obs, 2 = 2nd obs, etc.
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Plot of LEFFORT*LKDST.
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Model: MODEL1
Dependent Variable: EFFORT

Unmanned Space

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value
Model 1 514118.60703 514118.60703 51.061
Error 7 70480.72186 10068.67455
C Total 8 584599.32889
Root MSE 100.34279 R-square 0.8794
Dep Mean 263.18889 Adj R-sg 0.8622
C.V. 38.12577
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0
INTERCEP 1 ~-18.382864 51.68597661 -0.356
KDSI 1 7.063467 0.98849024 7.146
Dep Var Predict Std Err Lower95% Upper95%
Obs EFFORT Value Predict Mean Mean
1 80.0000 64.2597 43.517 -38.6422 167.2
2 912.0 806.6 83.082 610.2 1003.1
3 115.0 80.5057 42.099 -19.0428 180.1
4 432.0 336.9 35.003 254.1 419.7
5 296.0 472 .2 44 .431 367.1 577.2
6 164.0 143 .4 37.415 54.8974 231.8
7 57.0000 29.6487 46.764 -80.9311 140.2
8 197.4 326.4 34.598 244.6 408.2
9 115.3 108.8 39.820 14.6286 202.9
Upper95%
Obs Predict Residual
1 322.9 15.7403
2 1114.7 105.4
3 337.8 34.4943
4 588.2 95.0905
5 731.7 -176.2
6 386.6 20.6295
7 291.4 27.3513
8 577 .4 -129.0
9 364.1 6.5122
Sum of Residuals 0
Ssum of Squared Residuals 70480.7219

Predicted Resid SS (Press)

197450.8363

D-9

Prob>F

0.0002

Prob > |T]|

0.7326
0.0002

Lower95%
Predict

-194.4
498.6
-176.8
85.6149
212.7
-109.9
~-232.1
75.4320
-146.5
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Model: MODEL?2

Dependent Variable: LEFFORT

Source

Model
Error
C Total

Root MSE
Dep Mean
Cc.V.

Variable DF

INTERCEP 1
LKDSI 1

Dep

Ob LEF

“n

WooJoyuUlid W
U TR oY

Uppe
Obs Pre

WoOoToOUuTWNE
[S20 e WSS e W MU REN N U |

Ssum of Residua

D

var
FORT

.3820
.8156
. 7449
.0684
.6904
.0999
.0431
.2852
L7475

r95%
dict

.1816
.2759
.3287
.4574
.7646
.7458
.7518
.4293
.5393

1s

Unmanned Space

Analysis of Variance

sum of Squared Residuals
Predicted Resid SS (Press)

Sum of Mean
F Squares Square F Value
1 5.48967 5.48967 69.705
7 0.55129 0.07876
8 6.04096
0.28063 R-square 0.9087
5.20856 Adj R-sg 0.8957
5.38795
Parameter Estimates
Parameter Standard T for HO:
Estimate Error Parameter=0
2.270968 0.36407489 6.238
0.885874 0.10610599 8.349
Predict Std Err Lower95% Upper95%
Value Predict Mean Mean
4.4499 0.130 4.1415 4.7582
6.4881 0.180 6.0636 6.9127
4.6088 0.118 4.3299 4.8877
5.7418 0.113 5.4740 6.0097
6.0276 0.136 5.7071 6.3481
5.0448 0.096 4.8187 5.2708
3.9691 0.175 3.5542 4.,3840
5.7153 0.112 5.4516 5.9789
4.8317 0.104 4.5861 5.0773
Residual
-0.0678
0.3275
0.1361
0.3266
-0.3373
0.0551
0.0739
-0.4300
-0.0841
0
0.5513
0.9769
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Prob>F

0.0001

Prob > |T]|

0.0004
0.0001

Lower95%
Predict

dowkhvTunwUol W

L7181
.7003
.8890
.0262
L2907
.3437
.1865
.0012
.1241
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